Mathematical Modeling and Experimental Identification of an Unmanned Helicopter Robot with Flybar Dynamics

نویسندگان

  • S. K. Kim
  • Dawn M. Tilbury
چکیده

This paper presents a mathematical model for a model-scale unmanned helicopter robot, with emphasis on the dynamics of the flybar. The interaction between the flybar and the main rotor blade is explained in detail; it is shown how the flapping of the flybar increases the stability of the helicopter robot as well as assists in its actuation. The model helicopter has a fast time-domain response due to its small size, and is inherently unstable. Therefore, most commercially available model helicopters use the flybar to augment stability and make it easier for a pilot to fly. Working from first principles and basic aerodynamics, the equations of motion for full six degree-of-freedom with flybar-degree of freedom are derived. System identification experiments and results are presented to verify the mathematical model structure and to identify model parameters such as inertias and aerodynamic constants. © 2004 Wiley Periodicals, Inc. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical Modeling and Experimental Identification of a Model Helicopter

This paper presents a new mathematical model for a model-scale helicopter. Working from first principles and basic aerodynamics, the equations of motion for full six degree-of-freedom motion are derived. The control inputs considered are the four pilot commands from the radio transmitter: roll, pitch, yaw, and thrust. The model helicopter has a fast time-domain response due to its small size, a...

متن کامل

Design, Modeling, Implementation and Experimental Analysis of 6R Robot (TECHNICAL NOTE)

Design, modeling, manufacturing and experimental analysis of a six degree freedom robot, suitable for industrial applications, has been described in this paper. The robot was designed on the assumption that, each joint has an independent DC motor actuator, with gear reduction and measuring sensor for angular joint position. Mechanical design of the robot was done using Mechanical Desktop and ma...

متن کامل

Mathematical Dynamics, Kinematics Modeling and PID Equation Controller Of QuadCopter

Abstract Quadcopter is the Unmanned Aerial Vehicle that can vertical tack off and landing. its useful platform for many applications in Commercial, civil or military . In this article ,we present  the Dynamics and Kinematics model of  quadcopter  and the effect of forces by introducing two frames on the ground and it’s body, also we design and implement the PID controller t...

متن کامل

System Identification Modeling of a Model-Scale Helicopter

Abstract: Development of a reliable high-performance helicopter-based unmanned aerial vehicle (UAV) requires an accurate and practical model of the vehicle dynamics. This report describes the process and results of the dynamic modeling of a model-scale unmanned helicopter (Yamaha R-50 with 10 ft rotor diameter) using system identification. A complete dynamic model was derived for both hover and...

متن کامل

Improved Mathematical Model for Helicopters Flight Dynamics Applications

The purpose of this paper is concerned with the mathematical model development issues, necessary for a better prediction of dynamic responses of articulated rotor helicopters. The methodology is laid out based on mathematical model development for an articulated rotor helicopters, using the theories of aeroelastisity, finite element and the time domain compressible unsteady aerodynamics. The he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Field Robotics

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2004